Macrocyclization Equilibria of Polypeptides

M. Mutter
Contribution from the Institut für Organische Chemie. D-7400 Tübingen 1. West Germany. Received April 21. 1977

Abstract

An elaborated form of the Jacobsen-Stockmayer theory of cyclization equilibria is used to calculate the cyclization constants K_{x} for the x-membered peptide sequences poly(D-Ala-L-Ala) (I), poly(D-Pro-L-Ala) (II), poly(Gly) (III), poly(L-Pro-L-Ala) (IV), poly(D-Ala-D-Ala-L-Ala-L-Ala) (V), and poly (L-Ala) (VI). Cyclics with 6-20 amino acid residues are considered, the peptide bond being in the trans planar position. According to this theory, $K_{x}=W(0)\left[2 \Gamma_{0}(1)\right] / \sigma_{c x} N_{\mathrm{A}}$, where $W(\mathrm{r})$ is the probability density function for the chain vector $\mathbf{r} ; \Gamma_{\mathbf{0}}(\gamma)$ is the probability distribution, when $\mathbf{r}=0$, of $\gamma \equiv \cos \Delta \theta, \Delta \theta$ being the angle between a hypothetical bond $(3 x+1)$ and bond $1 ; \sigma_{c x}$ corresponds to the symmetry number of the ring; N_{A} is Avogadro's number. The evaluation of $W(\mathbf{r})$ is performed in different approximations. The required configurational averages for computing the density distribution $W(\mathbf{r})$ and the angular correlation factor $\Gamma_{0}(1)$ are obtained by Monte Carlo techniques. The statistical weights for discrete values of φ_{i} and ψ_{i} for the individual amino acid residues were obtained by conformational energy calculations using semiempirical potential functions. From this theory, the formation of rings is predicted to be very unfavorable for VI, whereas sequence I has a high ring closure probability. The other sequences have intermediate K_{x} values and show decreasing tendency to cyclize in going from II to VI. K_{x} decreases with the number of residues in the ring. Strong deviations of $W(r)$ from Gaussian distribution are indicated, except for the racemic sequences I and II. The deviations depress the value of K_{x} considerably. Similarly, the angular correlation is found to be unfavorable in nearly all cases. As a general result, for chains which take on extended conformations as expressed in a large characteristic ratio C_{x} and persistence vector a, the formation of a ring is difficult. By taking poly(Gly) as standard, the cyclization constants K_{x} for $x=10$ (20) are found to be $4(5), 1.02(1.7), 0.09(0.08), 0.017(0.06)$, and $0.01(0.01)$ times the value for poly(Gly) for sequences I, II, IV, V, and VI, respectively. According to these results, the formation of cyclics should be easy for the regularly alternating D, L sequence and for chains containing the flexible Gly residue, whereas sequences of the all-L-Ala type are expected to have a negligible tendency to cyclize. These predictions are shown to be in good qualitative agreement with observation. From these results, the density distribution $W(0)$ of the end-to-end distance r and the angular correlation of chain ends are major factors in determining K_{x}.

Cyclic peptides are of particular interest because many biologically active peptides are cyclic compounds. Furthermore, recent investigations have shown that the formation of cyclic peptides in the polymerization of amino acid N-carboxylic anhydrides is a common feature. ${ }^{1}$ Despite the fact that the conformation of several biologically important cyclic peptides has been elucidated by experimental and theoretical methods, ${ }^{2,3}$ no systematic investigations have been performed concerning the equilibrium concentration of cyclic species with linear peptide chains. The equilibrium concentration reflects the propensity of linear chain molecules to undergo a cyclization reaction. Those investigations have impact not only in predicting the equilibrium concentration of cyclic rings but also in delineating the structural features of various peptide sequences in respect to the tendency of polypeptides to form a ring, and provide a theoretical basis for the conception of synthesis of cyclic compounds.

In order to undergo a cyclization step, two requirements are necessary. (i) Atom $3 x-1$ in Figure 1 must be situated at a distance from atom 0 equal to the length of the anticipated bond $3 x$ (joining atom $3 x-1$ and $3 x$), i.e. vector r must be 0 . (ii) The direction of the bond to be formed, $3 x$, must yield acceptable bond angles at atoms $3 x-1$ and 0 . The former requirement is taken into account by the classical JacobsonStockmayer theory, the latter in recent theory. ${ }^{4}$

In a series of three papers, we calculated the equilibrium constants K_{x} of poly(dimethylsiloxane) ${ }^{5}$ and poly(6-aminocaproamide), ${ }^{6}$ applying an elaborated form of the JacobsonStockmayer theory of macrocyclization equilibria. ${ }^{4}$ The new theory includes the angular correlation of chain ends, expressed as a correlation factor $2 \Gamma_{0}(1)$, and gives special attention to the evaluation of the density distribution for chains with intermediate size, where the deviation from Gaussian distribution can be large. Angular correlations and deviations from Gaussian distribution were major factors in improving the classical theory of Jacobson and Stockmayer. ${ }^{7}$

In this paper, we calculate K_{x} for polypeptides with different amino acid sequences on the basis of this new theory. Specifi-
cally, this includes the calculation of the density $W(0)$ for chains with small end-to-end distances in different approximations and the angular correlation factor $2 \Gamma_{0}(1)$. The amino acid sequences treated in this paper reflect the main structural features of many naturally occurring and synthetic cyclic peptides. Six different sequences are investigated: poly(L-Ala), poly(D-Ala-L-Ala), poly(Gly), poly(D-Ala-D-Ala-L-Ala-LAla), poly(L-Ala-L-Pro), and poly(D-Ala-L-Pro). In all cases, the peptide bond is assumed to be in the trans planar position. ${ }^{8}$

Theory of Macrocyclization

The theory of macrocyclization in its elaborated form has recently been published; ${ }^{4}$ therefore, only the main equations are given here.

Consider the cyclization process:

$$
\begin{equation*}
-\mathbf{M}_{x+y^{-}} \rightleftharpoons-\mathrm{M}_{y^{-}}+\mathrm{c}-\mathrm{M}_{x} \tag{1}
\end{equation*}
$$

where $-\mathrm{M}_{x+y^{-}}$and $-\mathrm{M}_{y^{-}}$are chain molecules comprising sequences of $x+y$ and y repeating units, respectively, and $\mathrm{c}-\mathrm{M}_{x}$ is a cyclic compound with x units. The nature of the terminal groups, expressed by dashes, is immaterial; yet, the unspecified terminal groups in the species $-\mathrm{M}_{y^{-}}$and $-\mathrm{M}_{x+y^{-}}$ must be chemically equivalent.

At equilibrium conditions, the cyclization process is governed by the cyclization constant:

$$
\begin{equation*}
K_{x}=\left[-\mathrm{M}_{y}-\right]\left[\mathrm{c}-\mathrm{M}_{\mathrm{x}}\right] /\left[-\mathrm{M}_{x+y}-\right] \tag{2}
\end{equation*}
$$

where K_{x} measures the propensity of cyclization. According to a relationship established by Jacobson and Stockmayer:

$$
\begin{equation*}
K_{x}=\left[\mathrm{c}-\mathrm{M}_{x}\right] \tag{3}
\end{equation*}
$$

in the limit of high extents of reaction. Hence, K_{x} measures the propensity for cyclization and equates to the concentration of the cyclic compound when the concentrations of $-\mathrm{M}_{y^{-}}$and $-\mathrm{M}_{x+y}$ are equal.

We consider the cyclization process in Figure 1. By elabo-

Figure 1. Polypeptide chain in the reference frame of the first amide bond. $\Delta \theta$ denotes angle between the direction of the hypothetical $(3 x+1)$ st bond and the first bond.
rating the Jacobson-Stockmayer theory to include angular correlations of chain ends we get the expression:

$$
\begin{equation*}
K_{x}=2 W(\mathbf{0}) \Gamma_{0}(1) / \sigma_{\mathrm{cx}} N_{\mathrm{A}} \tag{4}
\end{equation*}
$$

where $W(\mathrm{r})$ is the probability of the value \mathbf{r} for the end-to-end vector per unit volume; $\gamma=\cos \Delta \theta$ corresponds to the bond angle between the first and the hypothetical bond $3 x+1$, dotted in Figure 1; hence, $\Gamma_{0}(1)$ is the probability that γ assumes the specific value, namely $\gamma=1$, and therefore $\Delta \theta=0$ for chains with $\mathrm{r}=0 . \sigma_{\mathrm{cx}}$ is the symmetry number and N_{A} is Avogadro's number. The direction correlation distribution $\Gamma_{\mathrm{r}}(\gamma)$ is expanded in the Legendre polynomials $P_{k}(\gamma)$. For the circumstances of immediate interest, $\mathrm{r}=\mathbf{0}$ and $\gamma=1$ (Figure 1) we get:

$$
\begin{equation*}
2 \Gamma_{0}(1)=\sum_{k=0}^{\infty}(2 k+1)\left\langle P_{k}\right\rangle_{\mathrm{r}=0} \tag{5}
\end{equation*}
$$

where $\left\langle P_{k}\right\rangle_{\mathrm{r}}$ are averages of the polynomials over all configurations having the specified value of $\mathrm{r} .\left\langle P_{k}\right\rangle_{\mathrm{r}}$ is given by:

$$
\begin{equation*}
\left\langle P_{k}\right\rangle_{\mathbf{r}}=\bar{Z}^{-1} \int_{\mathbf{r}} \cdots \int P_{k}(\gamma) \exp (-E\{\mathbf{1}\} / k T) \mathrm{d}\{\mathbf{1}\} / \mathrm{d} \mathbf{r} \tag{6}
\end{equation*}
$$

where $\{1\}$ is the set of all skeletal bond vectors 1 to $3 x+1$, and the integrations include all configuration space $\{1\}$ in which the chain vector spanning bond 1 to $3 x$ conforms to the value r. The configuration integral subject to the same conditions is:

$$
\begin{equation*}
\bar{Z}_{\mathrm{r}}=\int_{\mathrm{r}} \cdots \int \exp (-E\{\mathbf{1}\} / k T) \mathrm{d}\{\mathbf{1}\} / \mathrm{dr} \tag{7}
\end{equation*}
$$

Fourier inversion allows $\left\langle P_{k}\right\rangle_{\mathrm{r}=0}$ to be expressed as:

$$
\begin{array}{r}
\left\langle P_{k}\right\rangle_{\mathrm{r}=0}=\left(\bar{Z}_{\mathrm{r}=0} / Z\right)^{-1}\left(3 / 2 \pi\left\langle r^{2}\right\rangle\right)^{3 / 2}\left[f_{k ; 0}-\left(\frac{3}{2}\right) f_{k ; 2}\right. \\
\left.+\left(\frac{3}{2}\right)^{2} \frac{1}{2!} f_{k ; 4}-\ldots\right] \tag{8}
\end{array}
$$

where

$$
\begin{gather*}
f_{k ; 0}=\left\langle P_{k}\right\rangle \\
f_{k: 2}=\frac{\left\langle P_{k} r^{2}\right\rangle}{\left\langle r^{2}\right\rangle}-\left\langle P_{k}\right\rangle \\
f_{k: 4}=\frac{\left\langle P_{k} r^{4}\right\rangle}{\left\langle r^{2}\right\rangle^{2}}-\frac{10}{3} \frac{\left\langle P_{k} r^{2}\right\rangle}{\left\langle r^{2}\right\rangle}+\frac{5}{3}\left\langle P_{k}\right\rangle . \text { etc. } \tag{9}
\end{gather*}
$$

In eq $9,\left\langle P_{k}\right\rangle$ denotes P_{k} averaged over all configurations regardless of \mathbf{r}, and Z is the configuration integral likewise without restriction on r .

The density distribution of vector r is given by $W(\mathrm{r})=\bar{Z}_{\mathrm{r}} / Z$. In the approximation that $W(\mathrm{r})$ is Gaussian:

$$
\begin{equation*}
\bar{Z}_{\mathrm{r}=0} / Z=\mathrm{W}(0)=\left(3 / 2 \pi\left\langle r^{2}\right\rangle\right)^{3 / 2} \tag{10}
\end{equation*}
$$

The density distribution can be approximated to any desired degree by the Hermite series $\mathscr{H}(\mathrm{r}),{ }^{9}$ which for $\mathrm{r}=0$ is:

$$
\begin{equation*}
\mathscr{H}(0)=1+3 \cdot 5 g_{4}+3 \cdot 5 \cdot 7 g_{6}+\ldots \tag{11}
\end{equation*}
$$

where

$$
\begin{gather*}
g_{4}=-\left(1 / 2^{3}\right)\left(1-3\left\langle r^{4}\right\rangle / 5\left\langle r^{2}\right\rangle^{2}\right) \\
g_{6}=-\left(1 / 2^{3} \cdot 3!\right)\left[3\left(1-3\left\langle r^{4}\right\rangle / 5\left\langle r^{2}\right\rangle^{2}\right)\right. \\
\left.-\left(1-3^{2}\left\langle r^{6}\right\rangle / 5 \cdot 7\left\langle r^{2}\right\rangle^{3}\right)\right] \tag{12}
\end{gather*}
$$

Then:

$$
\begin{equation*}
\left\langle P_{k}\right\rangle_{\mathbf{r}=0}=[\mathscr{H}(0)]^{-1}\left[f_{k: 0}-3 / 2 f_{k: 2}+\ldots\right] \tag{13}
\end{equation*}
$$

The quantities $\left\langle P_{k} r^{2 p}\right\rangle$ are estimated by resorting to Monte Carlo methods ${ }^{9}$ using conditional probabilities deduced from a suitable set of rotational states for analysis of the configurational statistics.

Basis of Computations

A polypeptide chain in a conformation approaching the requirements for cyclization is depicted in Figure 1. The coordinate system of reference is defined by the $\mathrm{C}(\mathrm{O})-\mathrm{N}$ bond (X axis); the Y axis is in the plane of the bonds $\mathrm{C}(\mathrm{O})-\mathrm{N}$ and $\mathrm{N}-\mathrm{C}^{\alpha}$ with the positive direction chosen to form an acute angle with the $\mathrm{N}-\mathrm{C}^{\alpha}$ bond. In order to form a ring, the dotted hypothetical bond $3 x+1$ must coalesce with bond 1 (joining atom 0 and 1).

Bond angles and bond lengths are assigned the values used previously. ${ }^{10,11}$ The length of the virtual bond of the trans peptide unit, spanning consecutive C^{α} atoms, is $3.80 \AA .{ }^{10}$

Conformational energy calculations were performed using semiempirical potential functions, including terms corresponding to bond torsional strain, van der Waals repulsion, London attractions, and electrostatic interactions between nonbonded atoms and groups as described previously. ${ }^{10.12}$ In the case of X-Pro sequences, the empirical conformational energy program for peptides (ECEPP) was used. ${ }^{13}$ Average quantities such as the square of the mean end-to-end distance $\left\langle r^{2}\right\rangle$ and the persistence vector a ${ }^{14}$ calculated with both sets of parameters ${ }^{10,13}$ for poly(Gly), poly(L-Ala), and poly(L-Pro) differed by no more than 10%.

All calculations were performed at a temperature of $25^{\circ} \mathrm{C}$ for chains with $6 \leq x \leq 20$. The required averages were evaluated by summing over discrete values of φ_{i} and ψ_{i} using 30° intervals if not specified otherwise. Conformations for which $E\left(\varphi_{i} \psi_{i}\right)$ exceeds its minimum value by more than 4.0 $\mathrm{kcal} \mathrm{mol}^{-1}$ were omitted from the sums inasmuch as their contributions turned out to be insignificant. The quantities of interest, i.e. the averaged Legendre polynomials $\left\langle P_{k}\right\rangle_{\mathbf{r}=0}$ and the density $W(0)$ in different approximations, were obtained using Monte Carlo procedures as follows. On the basis of sets of n computer generated random numbers, the state of each interdependent $\varphi_{i} \psi_{i}$ pair was identified with an interval of the numerical range corresponding to the Boltzmann factor for this particular conformation.

Peptide sequences containing Pro residues cannot be treated as totally independent units. Owing to the geometry of the pyrrolidine ring, Pro restricts the conformation space of its predecessor. Therefore, in the conformational energy calculations for obtaining the Boltzmann factors for individual conformations of residue X_{i} in a X_{i} - Pro_{i+1}-dipeptide, all interactions within this unit were taken into account, i.e. interactions of atoms within residue X_{i} with the pyrrolidine ring of Pro_{i+1}. precipitated by rotation about φ_{i} and ψ_{i}. In contrast to a Pro-Pro unit, the different puckering of the pyrrolidine ring turned out to be of minor importance for the conformational

Table I. Characteristic Ratio $C_{n}=\left\langle r^{2}\right\rangle / n l^{2}$ and Persistence Vector $\mathbf{a} \equiv\langle r\rangle$ for the Amino Acid Sequences I-VI (See Text) with $n=20$ Residues

Sequence	C_{20}	\mathbf{a}_{20}
I: (D-Ala-L-Ala)	0.73	4.08
II: (D-Pro-L-Ala)	1.41	5.9
III: Gly	1.89	6.4
IV: (L-Pro-L-Ala)	3.26	10.7
V: (D-Ala-D-Ala-L-Ala-L-Ala)	3.62	12.0
VI: L-Ala	6.45	21.0

characteristics of its predecessor in an X-Pro unit. Hence, the proline ring was taken in the "down" conformation with φ Pro fixed at -75°, which corresponds to the ring conformation with minimal internal energy. ${ }^{13,15}$ Because of the independence of the pair φ_{i} / ψ_{i} from $\psi_{\text {Pro }}$, the Boltzmann factors for residue \mathbf{X}_{i} preceding Pro_{i+1} were obtained in the customary way from the two-dimensional energy surface as a function of φ_{i} and ψ_{i} by including the interactions with the following Pro ring. The summation over the conformation space was done in this case by using 10° intervals for $\psi_{\text {Pro }}$ (for the energy map of Pro) and the φ_{i}, ψ_{i} pair of its predecessor (for the energy map of residue X_{i}).

Conformational Energy Diagrams

As the propensity for cyclization is intimately related to average chain dimensions, i.e. to the extendedness of the chain molecule in the random conformation, the energy maps of the single residues serve as a basis for the interpretation of the cyclization equilibria constants, computed according to the theory presented above. Therefore, the main features of the relevant energy maps will be shortly discussed. The energy map of Gly obtained by methods described above has four pronounced energy minima, corresponding to $\mathrm{g}^{ \pm} \mathrm{g}^{\mp}$ and $\mathrm{g}^{ \pm} \mathrm{g}^{ \pm}$ conformations for φ / ψ. Specifically, the $\pm \mp$ quadrants of the energy surface account for ca. 65% and the $\pm \pm$ quadrants for $\mathrm{ca} .35 \%$ of the residue partition function. Owing to the relative symmetric energy surface and to the large accessible conformation space, Gly is expected to be very flexible. This is confirmed by a low characteristic ratio C_{n} and a small value of the persistence vector a, as shown in Table I, for (Gly) ${ }_{20}$. Contrary to Gly, Ala has a much more restricted conformation space. Though there are three domains of low energy, 93% of the residue partition function is comprised by one region, which corresponds to an extended conformation. Consequently, Ala is much stiffer than Gly. This is confirmed by a high value of C_{n} and a (see Table I). The energy map of a D residue is obtained by reflecting the L residue map through its center, i.e. the signs of the rotation angles are reversed. Owing to this symmetry of a D and L residue, the racemic sequence $D, L-A l a$ is very compact, as can be realized from the low values of C_{n} and a.

Due to the five-membered ring, the rotation around φ is restricted in Pro; when the ring is taken in the "down" conformation, $\varphi_{\text {Pro }}$ is fixed at $-75^{\circ} .^{13}$ Consequently, the energy map of Pro is one-dimensional, i.e. a function of $\psi_{\text {Pro }}$ only. The energy diagram has two minima at $\psi_{1} \simeq-50^{\circ}$ and $\psi_{2} \simeq 145^{\circ}$. The minimum at ψ_{2} comprises nearly 70% of the partition function whereas the former one accounts for $\mathrm{ca} .30 \%$. Thus, the statistical weight of the more compact conformation $\left(\psi_{1}\right)$ is considerably higher in the case of Pro compared to Ala. Substitution of an L-Ala by an L-Pro residue in a poly(L-Ala) chain should consequently decrease the chain dimensions.

The Probability Density $\boldsymbol{W}(\mathbf{0})$ and Its Influence on $\boldsymbol{K}_{\boldsymbol{x}}$

The evaluation of $W(\mathbf{0})$, required for the calculation of $\left\langle P_{k}\right\rangle_{\mathrm{r}=0}$ as well as for K_{x}. is difficult for short chains where the deviation from Gaussian distribution is large. In the fol-
lowing, we first calculate $W(0)$ assuming Gaussian distribution; second, $W(0)$ is obtained in higher approximation by scalar Hermite expansion described in detail elsewhere. ${ }^{9}$ Third, $W(\mathbf{0})$ is estimated using a direct Monte Carlo procedure.
(1) Gaussian Distribution. For $r=0$ the Gaussian density distribution equates to:

$$
W(\mathbf{0})=\left(3 / 2 \pi\left\langle r^{2}\right\rangle\right)^{3 / 2}
$$

The square of the average end-to-end vector, $\left\langle r^{2}\right\rangle$. is obtained by Monte Carlo generation of 30000 chains. To check the accuracy of the Monte Carlo procedure, $\left\langle r^{2}\right\rangle$ was evaluated also by exact matrix multiplication methods ${ }^{10}$ for poly(L-Ala) and poly(Gly), using averaged transformation matrices obtained from summation over 30° intervals of φ_{i} and ψ_{i}. In both cases, $\left\langle r^{2}\right\rangle$ for chain lengths investigated in this paper, i.e. x $=6-20$, differed less than 3%, thus confirming the Monte Carlo result.
(2) Scalar Hermite Expansion. In applying several higher approximations of $W(0)$ in an earlier study, ${ }^{5}$ truncation of the scalar Hermite expansion at g_{4} gave best agreement with the other approximations, namely the direct Monte Carlo method and the three-dimensional Hermite expansion. For further improvement of $W(\mathbf{0})$, many more terms would have to be included, making this method impractical. Therefore, in the present investigation, we truncate the series expansion in eq 11 at g_{4}, as before. The quantities $\left\langle r^{2}\right\rangle$ and $\left\langle r^{4}\right\rangle$ are obtained by Monte Carlo generation of 30000 chains.
(3) Direct Monte Carlo Method. Here, the density in the vicinity of $r=0$ was calculated by generating 30000 Monte Carlo chains, the number of chain termini falling within a sphere of radius $\delta \mathrm{r}$ about the origin being divided by the volume of the sphere; r is chosen to be $0.3\left\langle r^{2}\right\rangle^{1 / 2}$ if not otherwise specified.

The Angular Correlation Factor $2 \Gamma_{0}(1)$. The angular correlation factor $2 \Gamma_{0}(1)$ was evaluated according to eq 5 . The averaged Legendre polynomial $\left\langle P_{k}\right\rangle_{\mathrm{r}=0}$ with $k=1,2, \ldots, 5$ and arguments $\gamma=\cos \Delta \theta$ over all configurations for which $\mathrm{r}=0$ were obtained from eq 8 and 9 by Monte Carlo generation of the moments $\left\langle P_{k} r^{2 p}\right\rangle$ without restriction on r. Again, 30000 chains were generated for each sequence and chain length. The Hermite series $\mathscr{H}(0)$ required in eq 13 was truncated at g_{4}.

Results

The equilibrium constant K_{x} is calculated according to eq $4 ; K_{x}$ is evaluated first on the basis of $W(0)$ in different approximations, neglecting angular correlations, i.e. for $2 \Gamma_{\mathbf{0}}(1)$ $=1$. then, the angular correlation factor is additionally taken into account.
(1) Poly(Gly). K_{x} calculated assuming Gaussian distribution of $W(\mathbf{r})$ is represented by curve 1 in Figure 2. Curves 2 and 3 correspond to the scalar Hermite series expansion truncated at g_{4} and to the direct Monte Carlo procedure, respectively. Both higher approximations indicate a departure from Gaussian distribution throughout the investigated range. As a consequence, K_{x} is lowered by factors of ca. 1.7,1.4, and 1.2 for $x=6,10$, and 20, respectively. Curves 2 and 3 are in excellent agreement for $x \geq 6$. Curve 4 of Figure 2 will be discussed later. In Figure 3 we show $\left\langle P_{1}\right\rangle_{r=0}$ calculated with truncation of eq 13 at the terms $f_{1: 2 s}$ of the indicated rank $2 s$ and plotted against x. The error bars represent twice the standard deviation σ_{m} of the mean, embracing a confidence limit of ca. 95%. The first term of eq 1 , i.e. $f_{1: 0}$, is zero for all x. By including the second term, $f_{1: 2},\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ is rendered negative throughout; $f_{1 ; 4}$ decreases $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ further, but its influence on $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ vanishes beyond $x=12$. The next term, $f_{1: 6}$, has no contribution to $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ for all x. Hence, terms up to and including $f_{1: 4}$ suffice to determine $\left\langle P_{1}\right\rangle_{\mathbf{r}=0}$ for $x \geq 6$.

Figure 2. Cyclization equilibrium constant K_{x} plotted on log scales against the number of amino acid residues x for poly(Gly). Curves 1,2 , and 3 correspond to different approximations for $W(0)$, with neglect of orientational correlations between terminal bonds: curve 1, spherical Gaussian: 2, Hermite series expansion truncated at $g_{4} ; 3$, direct Monte Carlo method, curve 4 is calculated according to eq 4 , including departures from Gaussian distribution and angular correlations (for details see text).

Figure 3. Averaged Legendre polynomial of first-order $\left\langle P_{1}\right\rangle_{r=0}$ for poly(Gly) calculated with truncation of the series expansion in eq 13 at the term $f_{t: 2 s}$ of the indicated rank 2 s . Error bars denote $2 \sigma_{\mathrm{m}}$ limits.

The Legendre polynomials of higher order, $\left\langle P_{k}\right\rangle_{\mathbf{r}=0}$ up to k $=5$, calculated similarly from 30000 Monte Carlo chains, have no contribution to $2 \Gamma_{0}(1)$, i.e. within the error limit of $2 \sigma_{m}$ they are indistinguishable from zero. Hence, $2 \Gamma_{0}(1)$ is adequately represented by eq 14 for poly(Gly).

$$
\begin{equation*}
2 \Gamma_{0}(1)=1+3\left\langle P_{1}\right\rangle_{r=0} \tag{14}
\end{equation*}
$$

The constants K_{x} were evaluated according to eq 4 , using eq 11 truncated at g_{4} and eq 14 for $W(0)$ and $2 \Gamma_{0}(1)$, respectively. The symmetry number $\sigma_{\mathrm{c} x}$ equals x. The result is shown by curve 4 in Figure 2. The inclusion of angular correlations, being negative for all x, leads to a further depression of K_{x}. Specifically, K_{x} calculated by ignoring angular correlations is lowered by factors of $4.6,1.5,1.4$, and 1.2 for $x=6,8,10$,

Figure 4. Log K_{x} for poly(L-Ala) against the number of residues x with neglect of angular correlations: curve 1, spherical Gaussian approximation of $W(0)$: 3, direct Monte Carlo method for $W(0)$.
and 15 , respectively. For $x>15$, the influence of angular correlations is very small. The relative moderate deviations from Gaussian distribution, the high density at $\mathrm{r}=\mathbf{0}$, and the rapidly decreasing angular correlation with chain length reflect the high flexibility of this polypeptide chain, as was expected from the energy map discussed above. As a consequence, rings containing Gly residues should be easily formed. These predictions will be related to experimental results in a later section of this paper.
(2) Poly(L-Ala). As before, K_{x} was first calculated according to eq 4 ignoring angular correlations. The results are represented by curves 1 and 3 in Figure 4. The values of K_{x} in Gaussian approximation are lower compared to poly(Gly) by factors of ca. 4 and 6 for $x=10$ and 20 , respectively, indicating a low density at $\mathrm{r}=0$. This is a direct consequence of the greater C_{x}. Furthermore, a strong deviation from the spherical Gaussian distribution is indicated by curve 3 , which corresponds to the direct Monte Carlo method. This result is in harmony with recent calculations by Conrad and Flory on the density distribution of poly(L-Ala), ${ }^{11}$ where departures from Gaussian behavior were shown to be significant even at $x=$ 40. Because of the low density at $\mathrm{r}=0$, which is a consequence of the extendedness of this peptide chain, the moment method to evaluate $W(0)$ must fail in this case for short chain lengths. For the estimation of $W(0)$ we must therefore rely on the Monte Carlo method. To this end, different spheres $\sigma_{\mathbf{r}}$ were chosen for determinating $W(0)$.

When σ_{r} was taken to be $0.3\left\langle r^{2}\right\rangle^{1 / 2}$ and $0.5\left\langle r^{2}\right\rangle^{1 / 2}$, sampling ca. 1 and 5%, respectively, of the total population, both estimates for $W(0)$ were different by less than 10% for $x>7$. Therefore, curve 3 is believed to be a good approximation. Taking these values, the depression of K_{x} due to the departure from Gaussian distribution amounts to factors of ca. 17, 8, and 3 for $x=8,12$, and 20 , respectively. The results for the evaluation of the angular correlation factor $2 \Gamma_{\mathbf{0}}(1)$ are shown in Figure 5.

The first term in $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}, f_{1: 0}$ (Figure 5), is positive for all x. The following terms, $f_{1: 2}, f_{1 ; 4}$, and $f_{1 ; 6}$, render $\left\langle P_{1}\right\rangle_{\mathbf{r}=0}$ continuously more negative and all of them have a significant contribution to $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ throughout the range of x. Alternating

Figure 5. $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ for poly(L-Ala) with truncation of eq 13 as indicated. The Hermite expansion $\mathscr{H}(0)$ in eq 13 was substituted in this case by the direct Monte Carlo approximation for evaluating $W(0)$.
lower and higher values of $\left\langle P_{1}\right\rangle_{\mathbf{r}=0}$ are obtained for small x. The next term, $f_{1: 8}$, contributes to $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ only for $x<10$ and virtually vanishes for $x \geq 10 . f_{1 ; 10}$, not shown in Figure 5, still is significant for $x<10,\left\langle P_{1}\right\rangle_{\mathbf{r}=0}$ being rendered even more negative. For fully determining $\left\langle P_{1}\right\rangle_{\mathbf{r}=\mathbf{0}}$, more terms in $f_{1 ; 2 s}$ would have to be included; the evaluation at these higher terms is outside the scope of the present calculations. Hence, for x $>10,\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ is determined by terms up to $\hat{j}_{1: 6}$, whereas for $x<10,\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ does not converge satisfactorily. Nevertheless, a strongly negative value of $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ for $x<10$ is clearly indicated.

Legendre polynomials of higher order, i.e. $\left\langle P_{k}\right\rangle_{\mathbf{r}=0}$ with k up to 5 , have also been computed. All higher polynomials were positive throughout the range of x, their magnitudes being close to the error limit of $2 \sigma_{\mathrm{m}}$.

For $\left\langle P_{2}\right\rangle_{\mathrm{r}=0}$ and $\left\langle P_{3}\right\rangle_{\mathrm{r}=0}$, a medium value of ca. 0.03 ± 0.02 is indicated, individual points showing considerable scattering. The higher terms, $\left\langle P_{4}\right\rangle_{\mathrm{r}=0}$ and $\left\langle P_{5}\right\rangle_{\mathrm{r}=0}$, were practically indistinguishable from zero for $x>15$. The addition of the higher terms in $\left\langle P_{k}\right\rangle_{\mathrm{r}=0}$ to $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ leads to a value of $2 \Gamma_{0}(1)$ very close to zero. For $x=6$, the higher polynomials of $\left\langle P_{k}\right\rangle_{\mathrm{r}=0}$ are consistently more positive than for other chain lengths indicating much higher values for $2 \Gamma_{0}(1)$. Yet, the Legendre polynomials did not converge satisfactorily for this small chain length, making a reliable estimate for $2 \Gamma_{0}(1)$, and hence for K_{6}, impossible. Due to the relatively large errors in the higher polynomials, $\left\langle P_{k}\right\rangle_{r=0}$, a quantitative evaluation of $2 \Gamma_{0}(1)$ (and consequently of K_{x}) is impossible. Nevertheless, a maximum value of K_{x} can be estimated. For example, taking the maximum values of $\left\langle P_{k}\right\rangle_{r=0}$ for $\left.k\right\rangle 1$ within the probable error including terms up to $k=5,2 \Gamma_{0}(1)$ takes on values between 0 and 0.2 throughout the range of $10 \leq x \leq 20$.

In contrast to poly(Gly) and the polymers treated earlier, higher terms in $\left\langle P_{k}\right\rangle_{\mathbf{r}=0}$ are important for the determination of the angular correlation factor $2 \Gamma_{0}(1)$.

For reasons mentioned above, only maximum values for the cyclization constants K_{x} are calculated. The negative angular correlation depresses the K_{x} values of poly(L-Ala) very drastically. Specifically, K_{x} taken from curve 3 in Figure 4 is reduced by a factor that does not exceed 0.20 when angular correlations are included. The very low K_{x} values of poly (LAla) are a consequence of the pronounced tendency of this residue to adopt extended conformations, which makes a cyclization reaction very unfavorable due to a low density $W(\mathbf{0})$.

Figure 6. Log K_{x} for poly(D-Ala-L-Ala) against the number of residues x. The different approximations for $W(0)$ are shown by the straight line labeled 1, 2, 3, as before. Curve 4 corresponds to $\log K_{x}$ calculated from eq 4 .

Figure 7. $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ for poly(D-Ala-L-Ala). The labeling of the curves has the same meaning as in Figure 3.

The large value of the positive X component of the persistence vector a of ca. 16 is a further indication that the angular correlation factor $2 \Gamma_{0}(1)$ is expected to be strongly negative. This has been rationalized in our previous paper. ${ }^{4}$ Hence, the present calculations indicate that the tendency of poly(L-Ala) chains to cyclize is extremely low.
(3) Poly(D-Ala-L-Ala). The constants K_{x} calculated from eq 4 for the different approximations of $W(0)$ by setting $2 \Gamma_{0}(1)$ $=1$ are plotted against x in Figure 6. All three approximations gave identical results, i.e. the alternating D,L-polypeptide chain obeys Gaussian distribution for all $x \geq 6$. The K_{x} values are still considerably higher than those obtained for poly(Gly). This result can be explained by the very low characteristic ratio and the small persistence vector a, both values being only ca. one-tenth of the corresponding quantity for the stereoregular peptide chain (see Table I).
Figure 7 shows $\left\langle P_{1}\right\rangle_{r=0}$ calculated according to eq 13 with terms $f_{1: 2 s}$ truncated at $2 s$, plotted against x. The first term,

Figure 8. Log K_{x} for poly(D-Ala-D-Ala-L-Ala-L-Ala) against x. For details see Figure 2.
$f_{1: 0}$, has a maximum at $x=6$ and a minimum at $x=9$. For x >10, the term converges to zero. By inclusion of $f_{1: 2}$, the maximum and minimum get more pronounced, $\left\langle P_{1}\right\rangle_{\mathbf{r}=0}$ adopting positive and negative values, alternating in steps of three residues. The next term, $f_{1: 4}$, contributes to $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ only for $x=6$ and $x=7$ and vanishes for $x>7 . f_{1: 6}$ is significant for $x=6$. Hence, terms up to and including $f_{1: 2}$ suffice to determine $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ for $x>7$, whereas for $x=7$ and $x=6$ one or two, respectively, more terms must be included.

The Legendre polynomials $\left\langle P_{k}\right\rangle_{\mathbf{r}=0}$ of higher order up to $k=5$ have no contribution to $2 \Gamma_{0}(1)$. For $x>6$, the angular correlation factor is determined by eq 14 , whereas for $x=6$, $\left\langle P_{2}\right\rangle_{\mathrm{r}=0}$ and $\left\langle P_{3}\right\rangle_{\mathrm{r}=0}$, not shown here, contribute significantly to $2 \Gamma_{0}(1)$, being also positive. The values of $2 \Gamma_{0}(1)$ for $x=6$ are $2.5,3.14$, and 3.32 after truncation of eq 5 at $k=1,2$, and 3, respectively. Higher polynomials of $\left\langle P_{k}\right\rangle_{\mathrm{r}=0}$ were undistinguishable from zero.

The constants K_{x} calculated using eq 14 are shown by curve 4 in Figure 6. The inclusion of angular correlations increases K_{x} for $x=6$ and $x=7$ by factors of ca. 3.3 and 1.8 , respectively. For $x=9$ and $10, K_{x}$ is lowered by factors of 0.55 and 0.7 . For all other chain lengths, $2 \Gamma_{\mathbf{0}}(1)$ is unity within the error limits.

With regard to this result, the formation of cyclics of racemic sequences with alternating D, L sequences should be very favorable.
(4) Poly(D-Ala-D-Ala-L-Ala-L-Ala). This sequence shows close similarity to the poly(L-Ala) chain. As could be expected from the large values for the characteristic ratio and the persistence vector (see Table I), a relatively strong deviation from Gaussian distribution is found; as a further consequence of the low density at $W(\mathbf{0})$, the higher approximations are in poor agreement for $x<20$ (see Figure 8). Again, the direct Monte Carlo estimate of $W(0)$ gave consistent results, when different spheres of σ_{r} around the origin were taken

The angular correlation factor $2 \Gamma_{\mathbf{0}}(1)$ is dominated by the first polynomial, $\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$, which is strongly negative. Higher terms in $\left\langle P_{k}\right\rangle_{\mathrm{r}=0}$ were positive throughout and slightly larger than the error limit of $2 \sigma_{\mathrm{m}}$, similar to poly($\mathrm{L}-\mathrm{Ala}$). Hence, $2 \Gamma_{0}(1)$ is determined only when higher polynomials of $\left\langle P_{k}\right\rangle_{\mathrm{r}=0}$ are included. The exact value of K_{x} is difficult to obtain because of the large errors involved in the calculation

Figure 9. Log K_{x} for poly(L-Ala-L-Pro ${ }_{d}$) against x. For details, see Figure 2.

Table II. $\log K_{X}$ for the Peptide Sequences I-VI (Compare Table I) for Different Chain Lengths x, Calculated According to Eq 4^{a}

	$x=$			
Sequence	6	10	20	
II	$-0.33(75)$	$-1.60(4)$	$-2.04(5)$	
II	$-1.61(4)$	$-2.19(1.02)$	$-2.55(1.7)$	
III	$-2.21(1)$	$-2.20(1)$	$-2.78(1)$	
IV	$-2.699_{\max }(0.33)$	$-3.24_{\max }(0.09)$	$-3.86_{\max }(0.08)$	
V	$-3.02_{\max }(0.15)$	$-3.44_{\max }(0.017)$	$-3.98_{\max }(0.06)$	
VI	$-3.95_{\max }(0.006)$	$-4.19_{\max }(0.01)$	$-4.67_{\max }(0.01)$	

${ }^{a}$ The numbers in parentheses refer to the propensity of cyclization, when Gly is taken as standard. Numbers labeled "max" correspond to estimated maximal values of K_{x}. (For details see text.)
of $\left\langle P_{k}\right\rangle_{\mathbf{r}=0}$ when $k>1$. Very small values of $2 \Gamma_{\mathbf{0}}(1)$ are indicated, leading to strong depressions of K_{x}. Maximum values of K_{x} are given in Table II.
(5) Poly(L-Ala-L-Pro). The insertion of L-Pro residues in a poly(L-Ala) chain leads to considerably higher values of K_{x} (see Figure 9). This is a direct consequence of the reduced average chain dimensions (see Table I) due to the larger accessibility of the minima at ψ_{1} for Pro compared to Ala, as pointed out above. The depression of the K_{x} values due to deviations from Gaussian distribution amounts to factors of ca. 2.5 and 1.3 for $x=10$ and 20 , respectively. The agreement between the direct Monte Carlo estimate and the Hermite series expansion for getting $W(0)$ is within less than 10% for $x>12$.

In calculating $2 \Gamma_{\mathbf{0}}(1)$, polynomials $\left\langle P_{k}\right\rangle_{\mathbf{r}=\mathbf{0}}$ up to $k=3 \mathrm{had}$ to be included, similar to poly(L-Ala). Again, the angular correlation was negative for all $x,\left\langle P_{1}\right\rangle_{\mathrm{r}=0}$ being the dominant term. K_{x} values calculated from eq 4 indicate that the incorporation of L-Pro residues raises the K_{x} values of an all poly(L-Ala) chain by a factor of about 6 .
(6) Poly(D-Ala-L-Pro). The results for this sequence resemble those of poly(D-Ala-L-Ala). Yet, in this case a significant but small deviation from Gaussian distribution for $x<$ 20 is indicated and the values of K_{x} obtained from eq 4 by setting $2 \Gamma_{0}(1)=1$ are lower by a factor of ca. 3 for all x investigated (see Figure 10). Again, the angular correlation factor $2 \Gamma_{0}(1)$ is alternating, having positive values for $x=8$ and 12. For $x=6,10$, and 14 , minimum (negative) values are obtained. $2 \Gamma_{0}(1)$ is fully determined by eq 14 . Values for K_{x}
are shown in Table II. Though the K_{x} values are significantly lower compared to the racemic all-Ala sequence, the propensity to form a cyclic compound is still very high.

Discussion

The present calculations indicate that the ring closure probabilities, expressed in the equilibrium constant K_{x} for the different peptide sequences investigated here, span a very large scale. The K_{x} values obtained on the basis of the density $W(\mathrm{r})$ for $\mathbf{r}=\mathbf{0}$ by neglecting angular correlations, i.e. $2 \Gamma_{0}(1)=1$, reflect the extendedness of the different sequences as expressed in the characteristic ratio given in Table I. With the values of K_{x} from curve 3 in Figures $2,4,6,8,9$, and 10 , corresponding to the direct Monte Carlo estimates of $W(0)$, the following results are obtained. When poly(Gly) is taken as reference, the propensity for ring closure for poly(D-Ala-L-Ala) is higher by a factor of ca. 5, whereas it is lower for poly(L-Ala) by factors of ca. 50,30 , and 15 for $x=6,10$, and 20 , respectively. The incorporation of L-Pro residues in a poly($\mathrm{L}-\mathrm{Ala}$) chain raises the K_{x} values; however, K_{x} is still lower by a factor of ca. 3 compared to poly(Gly) for the regularly alternating L-Pro-L-Ala sequence. On the other hand, the substitution of the D-Ala residue by a D-Pro residue lowers K_{x} by a factor of ca. 2.5 for $x=10$, but the K_{x} values still are considerably higher than for poly(Gly).

Poly(D-Ala-D-Ala-L-Ala-L-Ala) has unexpectedly low values of K_{x}. being on the order of those of poly(L-Pro-L-Ala). As a general feature, all chains investigated, with the exception of poly(D-Ala-L-Ala), show significant departures from Gaussian distribution in the range of $6<x \leq 20$, lowering K_{x} up to a factor of ca. 30, as in the case of poly(L-Ala). The more extended the chains are, the stronger is the departure from the spherical Gaussian.

The inclusion of the angular correlation factor $2 \Gamma_{0}(1)$ amplifies the pronounced differences in the K_{x} values for the individual chains even more. Hence, chains with low densities at $r=0$ have generally a small value of $2 \Gamma_{0}(1)$, indicating an unfavorable angular correlation, whereas chains with high values in $W(0)$ have values of $2 \Gamma_{0}(1)$ close to 1 , in some cases $2 \Gamma_{0}(1)>1$, corresponding to positive angular correlations. The magnitude and direction of the persistence vector a were found to be a qualitative measure for the angular correlation for chain termini in polymers. ${ }^{4-6}$ This finding is confirmed by the peptide sequences investigated here. So, the extended poly((-Ala) chain with an exceptionally large X component of the persistence vector has a value of $2 \Gamma_{0}(1)$ close to zero, i.e. the angular correlation is very unfavorable. The racemic D, L sequence, on the other hand, has an extremely small persistence vector and, consequently, $2 \Gamma_{0}(1)$ is close to 1 and even shows favorable angular correlation ($2 \Gamma_{0}(1)>1$) for certain chain lengths. Table II contains K_{x} values for the different chains, calculated according to eq 4. Values labeled as "max" correspond to estimated maximal values of K_{x}. In reality, these values, which are difficult to calculate accurately for reasons mentioned above, can be smaller by several orders of magnitude. In the last column of Table II, ring closure probabilities are compared relative to Gly as standard. From these data, some predictions for the propensity to undergo a cyclization reaction are made and related to experimental evidence. The cyclization reaction should be most difficult for a poly(L-Ala) type chain. At equilibrium conditions, less than 0.01% are cyclics; consequently, the cyclization step in the synthesis of an all-trans-all-L-Ala type compound is expected to proceed in extremely low yields. This prediction from the conformational properties of this chain is in agreement with experimental findings. For example, the exceptional behavior in cyclization experiments of this type of peptide sequence has been observed frequently. ${ }^{16}$ As a striking example, the synthesis of an all-L-gramicidin S analogue has been unsuccessful despite many efforts. ${ }^{17} \mathrm{Re}$ -

Figure 10. Log K_{x} for poly(D-Ala-L-Pro ${ }_{d}$) against x. The numbers have the same meaning as in Figure 2.
cently, the synthesis of a cyclic L-hexaalanine has been reported. ${ }^{18}$ However, the yield has been exceptionally low. In this respect it is worth mentioning that for $x=6$ a much higher value for the angular correlation factor is indicated as mentioned before, leading to higher K_{x} values. This is in general harmony with the fact that hexapeptides give higher yields in cyclization reactions compared to other chain lengths. Hence, the exceptional behavior of chains with six residues is at least qualitatively confirmed in the present calculations. On the opposite scale, the regularly alternating racemic sequence of poly(D-Ala-L-Ala) is expected to undergo a cyclization very readily, K_{x} being higher by factors of 75,4 , and 5 for $x=6$, 10 , and 20 , respectively, compared to poly(Gly). For $x=20$, the tendency to form a cyclic compound is ca. 500 times higher than for poly(L-Ala). Interestingly, racemic sequences are a very common feature of naturally occurring antibiotics such as enniatin, gramicidin S, and valinomycin. The synthesis of the regularly alternating D, L sequence of the hexapeptide enniatin and its analogues is especially readily accomplished, ${ }^{19}$ in harmony with the exceptionally high value of K_{x} for $x=6$ due to favorable angular correlations indicated in the present calculations.

Further experimental evidence of the high ring closure probability of racemic sequences are the generally high yields in synthesizing these cyclic compounds; a large number of synthetic cyclics of this interesting class of peptides have therefore been reported. ${ }^{2,16,19}$ In agreement with the theoretical results obtained here, the synthesis of cyclo-(Gly-L-Leu-D-Leu-Gly-Gly) and cyclo-(Gly-L-Leu-L-Leu-Gly-Gly) resulted in considerably higher yields of the D,L compound. Similar observations were made during the synthesis of related sequences. ${ }^{20}$ From our results, the synthesis of cyclic peptides of the type (D, D, L, L), as in valinomycin, should be considerably more difficult compared to the (D,L) type. Cyclic peptides containing Gly residues also have high values of K_{x}, i.e. rings containing Gly should be easily formed. The K_{x} values for the poly(Gly) chain are considerably lower compared to the D.L chain, but still higher by a factor of ca. 100 than poly(L-Ala). Consequently, a large variety of cyclic peptides containing Gly residues have been synthesized. ${ }^{16.21}$ Even the incorporation of only one Gly residue in an (L-Ala) hexapeptide was sufficient to raise the cyclization yield several times. ${ }^{21}$

Despite the fact that Pro restricts the conformation space of its predecessor to extended conformations, its incorporation in an L-Ala-type chain raises K_{x} significantly due to the accessibility of more compact conformations for Pro. The successful synthesis of the decapeptide antamanid, ${ }^{22}$ which contains four Pro residues, is therefore not an unexpected result.

The general agreement between theoretical predictions of the propensity for cyclization and the experimental evidence indicates that the density distribution $W(0)$ of the end-to-end distance r and the angular correlation factor $2 \Gamma_{0}(1)$ are major factors in determining K_{x}. It should be emphasized that our results were obtained by assuming a random-coil conformation of the peptide chain, precipitated by short-range interactions only. Departures from our predictions for the cyclization tendency of polypeptides are expected when the experimental conditions chosen for the cyclization step are such that longrange interactions, e.g. conditions which enhance the onset of a secondary structure, are no longer negligible.

Acknowledgments. The author wishes to thank Professor P. J. Flory of Stanford University for many very helpful discussions and suggestions. This work was supported by the Deutsche Forschungsgemeinschaft.

References and Notes

(1) M. Rothe and D. Mühlhausen, Angew. Chem., 68, 338 (1976).
(2) Yu. A. Ovchinikov in 'The Chemlstry of Polypeptldes', Plenum Press, New York, N.Y., 1973.
(3) N. Go and H. A. Scheraga, Macromolecules, 3, 188 (1970): 6, 525 (1973).
(4) P. J. Flory, U. W. Suter, and M. Mutter, J. Am. Chem. Soc.. 98, 5733 (1976).
(5) U. W. Suter, M. Mutter, and P. J. Flory, J. Am. Chem. Soc., 98, 5740 (1976).
(6) M. Mutter, U. W. Suter, and P. J. Flory. J. Am. Chem. Soc., 98, 5745 (1976).
(7) H. Jacobson and W. H. Stockmayer, J. Chem. Phys., 18, 1600 (1950).
(8) IUPAC-IUB Commission on Blochemical Nomenclature. Abbrevlations and Symbols for the Description of the Conformation of Polypeptide Chains. Tentative Rules (1969). Biochemistry. 9, 3471 (1970).
(9) P. J. Flory and D. Y. Yoon, J. Chem. Phys.. 61, 53 (1974).
(10) P. J. Flory. "Statistlcal Mechanics of Chain Molecules'". Interscience, New York. N.Y., 1969.
(11) J. C. Conrad and P. J. Flory, Macromolecules. 9, 41 (1976).
(12) D. A. Brant and P. J. Flory. J. Am. Chem. Soc.. 87, 2791 (1965).
(13) H. A. Scheraga, "Empirical Conformational Energy Program for Peptides (ECEPP)". Quantum Chemlstry Program Exchange, QCPE Program No. 286.
(14) P. J. Flory, Proc. Natl. Acad. Scl. U.S.A., 70, 1819 (1973).
(15) F. A. Momany, R. F. McGuire. A. W. Burgess, and H. A. Scheraga. J. Phys. Chem.. 79, 2361 (1975).
(16) Schröder and Lubke, 'The Peptldes', Vol. I, Academic Press, New York, N.Y.. 1965; see especially p 271.
(17) R. Schwyzer, Amino Acids Pept. Antimetab. Act.. Ciba Found. Symp., 1958, 171 (1958).
(18) V. T. Ivanov, V. V. Shilin, Ya. Bernat. and Yu. A. Ovchinnikov, J. Gen. Chem. USSR (Engl. Transi.). 41, 2341 (1971).
(19) M. M. Shemyakln, Yu. A. Ovchinnikov, V. T. Ivanov, A. V. Evstratov, I. I. Mikhaleva, and I. D. Ryabova, J. Gen. Chem. USSR (Engl. Trans.), 42, 2316 (1972).
(20) P. M. Hardy, G. W. Kenner, and R. C. Sheppard. Tetrahedron. 19, 95 (1963).
(21) V. T. Ivanov, V. V. Shilin, and Yu. A. Ovchinnikov, J. Gen. Chem. USSR (Engl. Transl.). 40, 902 (1970).
(22) Th. Wieland, W. Konz, J. Faesel, and J. Lewalter, U.S. Patent No. 3705 887 (1973).

Communications to the Editor

Single-Crystal Susceptibilities of an $S=3 / 2 \operatorname{Iron}($ III $)$, Insulating Ferromagnet

Sir:

Several studies ${ }^{1,2}$ have been reported recently on the molecules $\mathrm{Fe}(\mathrm{X})\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ where X is a halogen and R is an alkyl group. These molecules are of interest because, as a result of their tetragonal pyramidal geometry, with $C_{2 v}$ symmetry at the iron site, they are among the few examples of a spin $3 / 2$ ground state for trivalent iron. The most extensively studied example, $\mathrm{Fe}(\mathrm{Cl})\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}$, hereafter $\mathrm{Fe}(\mathrm{dtc})_{2} \mathrm{Cl}$, crystallizes in space group $P 2_{1} / c$ and has a geometry in which the chlorine atom is at the apex of the pyramid and the iron atom is at the centroid, $0.62 \AA$ above the plane of the four sulfur atoms of the dithiocarbamate ligands. ${ }^{3}$ This particular example of this series of molecules is especially interesting because it has been reported as ordering ferromagnetically at $2.43 \mathrm{~K} .{ }^{2}$ Further significance attaches to $\mathrm{Fe}(\mathrm{dtc})_{2} \mathrm{Cl}$ in that, on the basis of the present measurements, and measurements in the critical region, this substance appears to be one of the very few examples of a three-dimensional Ising ferromagnet.
We have measured the magnetic susceptibility along the three principal axes in single crystals of $\mathrm{Fe}(\mathrm{dtc})_{2} \mathrm{Cl}$ using the near-zero-field mutual inductance method. The crystal structure is monoclinic and therefore the b axis, [010], must be the direction of one of the principal axes. Careful measurements along various directions in the $a c$ plane revealed that the other two principal axes, of maximum and minimum susceptibility in this plane, were, within an experimental uncertainty estimated to be 2°, respectively, along the [101] direction and along the direction normal to [010] and [101], that

Figure 1. The three principal crystal magnetic susceptibilities of Fe $(\mathrm{dtc})_{2} \mathrm{Cl}$. Circles, triangles, and squares are experimental data along the [010], (101) , and [101] axes, respectively. The curves are the best fits to the data with the parameters given in the text. The inset shows the susceptibility in the [101] direction at low temperatures; these data were obtained using a $1-\mathrm{mg}$ crystal and have not been corrected for demagnetization.
is the direction normal to the ($10 \overline{1}$) plane. These results, corrected for demagnetization, appear in Figure 1. The susceptibility along the [101] direction increases very rapidly with decreasing temperature until, just below 2.47 K , it attains an

